Properties of Dimension - A First Course in Linear Algebra


Once the dimension of a vector space is known, then the determination of whether or not a set of vectors is linearly independent, or if it spans the vector space, can often be much easier. In this section we will state a workhorse theorem and then apply it to the column space and row space of a matrix. It will also help us describe a super-basis for \(\complex{m}\text{.}\)

License
GFDL-1.2
Submitted At
September 11th, 2017
 7 years ago
Views
2
Type
 Textbook
Language
 English
Content Type
text/html
  • A set of vectors containing more elements than the dimension of the space must be linearly dependent, arbitrary vector space. math.la.t.vsp.dim.more.lindep.arb
  • math.la.t.vsp.dim.less.span.arb
  • math.la.t.vsp.dim.span.linindep.arb

History

September 11th, 2017 7 years ago

Submitted by Jim Fowler