We have seen how to compute the determinant of a matrix, and the incredible fact that we can perform expansion about any row or column to make this computation. In this largely theoretical section, we will state and prove several more intriguing properties about determinants. Our main goal will be the two results in Theorem SMZD and Theorem DRMM, but more specifically, we will see how the value of a determinant will allow us to gain insight into the various properties of a square matrix.

- License
- GFDL-1.2
- Submitted At
- September 11th, 2017
- 7 years ago
- Views
- 2
- Type
- Language
- English
- Content Type
- text/html

##### Equivalence theorem: the determinant of A is nonzero. math.la.t.equiv.det