math.la.t.mat.diagonalizable…

 
An n-by-n matrix is diagonalizable if and only if the union of the basis vectors for the eigenspaces is a basis for R^n (or C^n). math.la.t.mat.diagonalizable.basis
An n-by-n matrix is diagonalizable if and only if the characteristic polynomial factors completely, and the dimension of each eigenspace equals the multiplicity of the eigenvalue. math.la.t.mat.diagonalizable.charpoly
An n-by-n matrix with n distinct eigenvalues is diagonalizable. math.la.t.mat.diagonalizable.distinct
An n-by-n matrix is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n. math.la.t.mat.diagonalizable.eigenspace
A matrix is orthogonally diagonalizable if and only if it is symmetric. math.la.t.mat.diagonalizable.orthogonally