math.la.t.mat.eqn.lincomb
Advice to instructors for in-class activities on matrix-vector multiplication and translating between the various equivalent notation forms of linear systems, and suggestions for how this topic can be used to motivate future topics.
A 3x3 matrix equation Ax=b is solved for two different values of b. In one case there is no solution, and in another there are infinitely many solutions. These examples illustrate a theorem about linear combinations of the columns of the matrix A.
The linear combination of a set of vectors is defined. Determine if a vector in R^2 is in the span of two other vectors. The span of a set of vectors is related to the columns of a matrix. (need topic: Determine if a vector in R^2 is in the span of two other vectors.)
Equivalent statements for a matrix A: for every right-hand side b, the system Ax=b has a solution; every b is a linear combination of the columns of A; the span of the columns of A is maximal; A has a pivot position in every row.
In Section VO we defined vector addition and scalar multiplication. These two operations combine nicely to give us a construction known as a linear combination, a construct that we will work with throughout this course.
A matrix-vector product (Definition MVP) is a linear combination of the columns of the matrix and this allows us to connect matrix multiplication with systems of equations via Theorem SLSLC. Row operations are linear combinations of the rows of a matrix, and of course, reduced row-echelon form (Definition RREF) is also intimately related to solving systems of equations. In this section we will formalize these ideas with two key definitions of sets of vectors derived from a matrix.